New Product

ID-180 MK1 MANUAL

Huge Range Reader

ID Innovations

Advanced Digital Reader Technology

----Better by Design

Manual Rev 01 – 25th Feb 2005

ID Innovations Advanced Digital Reader Technology ---Better by Design

PRODUCT DESCRIPTION

Introduction

The ID-180 is our latest and most advanced reader for the popular EM4001 format 125 KHz tags to be introduced by ID-Innovations. The structure of ID-180 is different from normal Reader the antenna of ID-180 is separated from mail-instrument, and they are linked by cables. Read ranges of up to 190 cm are possible with our Long Range Cards and up to 100cm with our Long Range ISO cards. Advanced features include auto-tuning and DSP capabilities to increase read range and to reduce unwanted vibration and interference. The ID-180 also features Wiegand26, Wiegand34, Wiegand42, RS232. Magnetic ABA Track2 10digit and Magnetic ABA Track2 14digit output formats. Furthermore, for customer's selection, the ID-180 has special antiinterference software and is particularly suitable for applications such as car parks where readers are required to operate close to each with little or no degradation in performance. This with the huge range makes this reader ideal for car park applications.

Features

- Very Long Read Range 180cm
- Through-wall and hands free applications
- **Auto-Tuning**
- Cable from Antenna to main-instrument can be
- Six Output programmable Formats

Ideal for Car Park Applications

Description

DSP (Digital Signal Processing) is used to provide superior range and reduce vibration and electrical noise effects. These effects are not eliminated so care should still be taken to position the equipment away from sources of electrical noise and vibration.

Temperature changes can affect accuracy of the antenna tuning. The ID-180 is equipped with a sophisticated self-tune facility or auto-tune. The reader performs an auto-tune shortly after powerup.

Installation

Position the ID-180 away from sources of interference such as main wiring. Do not fix the reader antenna on solid steel objects or range loss will occur and the auto-tuning may even run out of range. Moderate metal fixtures are acceptable. Computer monitors used in DOS mode can result in powerful interference especially when older monitors are used. Vibration can also cause loss of range.

If possible use a 1amp regulated linear Power Supply. Some Switching regulators are excellent but some can sometimes produce powerful interference and reduce read-range.

SPECIFICATIONS

Table 1. ID-180 Operational & Physical Characteristics

Parameter	Conditions					
Power Requirements	12-14V DC					
Current Consumption	0.7 Amperes nominal					
Frequency	125 KHz					
Read Range	175 cm with our long range cards, 120cm with our ISO cards					
Interfaces	RS232 (9600, n, 8, 1) and Wiegand26/34					
Transponder	Read-only 64 bits, Manchester encoded					
Auto-tune	Internal upon switch-on and every 10 minutes					
Read Indication	LED and Beeper					
Dimensions	Antenna 655*455*25 / Reader Module 150*160*30					
Antenna Weight of	7.8 Kg instrument 160*120*35					

ID Innovations

Advanced Digital Reader Technology ---Better by Design

ID-180 Manual

Manual # ID180 MK1-3-10-05-GP

DATA FORMATS

Output Data Structure - ASCII

	STX (02h)	DATA (10 ASCII)	CHECK SUM (2 ASCII)	CR	LF	ETX (03h)
--	-----------	-----------------	---------------------	----	----	-----------

[The 1byte (2 ASCII characters) Check sum is the arithmetic addition of the 5 hex bytes (10 ASCII) Data characters.]

Output Data Structure – Wiegand26 (P = Parity start bit and stop bit)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
P	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	О	O	О	О	О	О	О	О	О	О	О	О	P
	Even parity (E)												(Odd	parit	ty (C))								

Output Data Structure — Wiegand 34 (P = Parity start bit and stop bit)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
P	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	Е	E	Е	Е	E	Е	O	O	O	О	O	O	O	O	O	О	О	О	О	О	О	O	P
	Even parity (E)														Oc	ld p	oari	ty ((O)														

Output Data Magnetic ABA Track2 10Decimal Characters

10 Leading Zeros SS	Data (10Ascii Char)	ES	LCR	10 Ending Zeros
---------------------	---------------------	----	-----	-----------------

[SS is the Start Character of 11010, ES is the end character of 11111, LRC is the Longitudinal Redundancy Check.]

Output Data Magnetic ABA Track2 14Decimal Characters

10 Leading Zeros	SS	Data (14Ascii Char)	ES	LCR	10 Ending Zeros

[SS is the Start Character of 11010, ES is the end character of 11111, LRC is the Longitudinal Redundancy Check.]

Report Format

Upon switch-on the reader sends a report via the RS232 line. The report indicates the Software Revision and the Tuning Variable. A typical report will be as follows (hex values):

Day	Month	Year	Revision #	Tune Variable	Arithmetic Checksum
01	01	01	08	04	1F

The Tune Variable indicates the Tuning Capacity. A figure between 01h-0Dh is OK. A figure outside this range can be caused by environmental demands, possibly due to fixing directly onto sheet steel.

Cable Signal Definitions

Wire color	Signal	Description
Red	PWR	+12V DC input
Black	GND	Ground
Yellow	Program1	Program line1 (format selector)
Violet	Program2	Program line2 (format selector)
Grey	-	Used to Select Magnetic Emulation
Green	Data 1	Weigand data 1, Magnetic ABA clock *
Brown	Data 0	Weigand data 0, Magnetic ABA data *
White	CP	Card Present
Blue	RS232	Serial RS232 output (9600, n, 8, 1)
Orange	-	Not Connected
Screen	GND	Earth Screen

^{*} In Weigand Mode add 1.5k pull-up resistors for Data0 and Data1 signals. In Magnetic Mode add 1.5k pull-ups to Data, Clock and Card Present

Table 3. Output Format Programming

ID-180 have 4 types data output to be chosen by customer as followed.

ID-180-A	Weg26/34 only
ID-180-B	RS232 only
ID-180-C	RS232/485
ID-180-D	Magnetic

Output Format	Programming
RS232	Connect PRGM (Yellow wire) to RS232 (Blue wire)
Weigand26	Connect Yellow wire to Black wire : Connect Violet to Black wire
Weigand34	Connect Yellow wire Red wire
Wiegand42	Connect Yellow wire to Black wire : Connect Violet to Red wire
Magnetic ABA Track2 10 digit	Connect Yellow wire to Grey wire: Connect Violet to Red wire
Magnetic ABA Track2 14 digit	Connect Yellow wire to Grey wire: Connect Violet to Back wire

Calculation of ASCII Check sum.

Suppose a card ID = 12, 34, 56, 78, 90 adding in hex gives:-

12
34
56 Thus 2+4+6+8 = 14(20 decimal). The 1 is carried. The 4 is the low sum.
78 and 1+3+5+7+9+ carry (+1) = 1A (26 decimal). The 1 is discarded. The A

is $\underline{90}$ the high sum. This gives **A4**.

A4

Additional kits:

- 1) 3 in 1*2m cable for antenna and RFID connection with 2 ends plug.
- 2) 2 in 1 cable for power connection with 1 end plug.
- 3) 3 in 1 cable for data connection with 1 end plug.

Specifications subject to change. ID Innovations reserves the right to change its products and the specifications given here at any time without notice.

ID Innovations
Advanced Digital Reader Technology
----Better by Design

Customer enquiry help@id-innvations.com